
Who checks the checkers?
Automatically finding bugs in

C-to-RTL Formal Equivalence Checkers
Michalis Pardalos

Imperial College London

United Kingdom

michail.pardalos17@imperial.ac.uk

Alastair F. Donaldson

Imperial College London

United Kingdom

alastair.donaldson@imperial.ac.uk

Emiliano Morini

Intel

USA

emiliano.morini@intel.com

Laura Pozzi

University of Lugano

Switzerland

laura.pozzi@usi.ch

John Wickerson

Imperial College London

United Kingdom

j.wickerson@imperial.ac.uk

ABSTRACT
C-to-RTL formal equivalence checkers (ECs) allow hardware imple-

mentations to be compared against software specifications. Thanks

to their complete state space coverage, they are often trusted to

authorise design sign-off, so ridding them of bugs is a top priority.

We have developed Equifuzz, a fuzzer for ECs that take SystemC as

input. Equifuzz has uncovered 7 unsoundness bugs in commercial

ECs (where the EC claimed equivalence incorrectly), and 5 incom-
pleteness bugs (where the EC failed to find an existing equivalence).

We believe that Equifuzz can be a valuable addition to the testing

infrastructure used by EC developers, with its randomly generated

designs complementing existing suites of handcrafted tests.

ACM Reference Format:
Michalis Pardalos, Alastair F. Donaldson, Emiliano Morini, Laura Pozzi,

and JohnWickerson. 2024. Who checks the checkers? Automatically finding

bugs in C-to-RTL Formal Equivalence Checkers . In Proceedings of Design
Automation Conference (DAC’24). ACM, New York, NY, USA, 7 pages. https:

//doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
C-to-RTL formal equivalence checkers (ECs) such as Synopsys

DPV [11], Cadence Jasper C2RTL [14] and Siemens SLEC [23]

are valuable tools in the hardware designer’s toolbox. They are

used to prove that an RTL implementation matches a higher-level

specification, usually written in C/C++/SystemC.Where simulation-

based approaches explicitly traverse the state space (and hence only

exhaustively check a subset of inputs or a limited number of cycles),

formal equivalence checkers provide an unbounded proof: valid

for any and all inputs to the design, and for any number of cycles.

This exhaustive coverage means that ECs are deeply trusted, even

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

DAC’24, June 23–27, Moscone West, San Fransisco
© 2024 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

to the extent of authorising design sign-off. Indeed, the Synopsys

marketing blog claims that:

HECTOR delivers 100% confidence that the RTL de-

sign implementation conforms to the C/C++ refer-

ence algorithm, thereby significantly speeding up sig-

noff [15]

while Siemens claim that their SLEC tool

enables designers to have the ultimate confidence

to move to high-level synthesis [. . . ] dramatically re-

ducing or eliminating the need for design teams to

perform simulation/verification of RTL. [21]

In this paper, we seek to help users and developers of ECs achieve

higher confidence by identifying bugs that might have escaped

manual testing. This is important because bugs in ECs can have

serious consequences, partly because they can be very difficult to

spot. A user checking a design with an EC will do so assuming

that the design matches the specification. If the design is incorrect

and the EC has a bug that hides that incorrectness, then that will

not become apparent until much later, when the bug in the design

has had its impact. Moreover, a bug in an EC could be exploited

to allow code maliciously inserted into a design to slip through

verification [2].

In order to evaluate, and hopefully improve, the reliability of

ECs, we turn to random testing, also known as fuzzing. This is a

technique that has found great success in uncovering bugs in many

different tools, from compilers [26] to graphics drivers [4]. We have

developed Equifuzz: a fuzzer for ECs that compare an RTL imple-

mentations against SystemC specifications. We focus on SystemC

because it is accepted by the three major commercial ECs, and often

used by their industrial users. Equifuzz works by repeatedly gener-

ating random SystemC programs. These are compared (using the

EC-under-test) against trivial RTL designs that they are known to

be equivalent to, recording a potential bug if the EC gives a result

other than “equivalent”. We demonstrate its effectiveness by using

it to uncover 12 distinct bugs in two commercial ECs, including 7

unsoundness bugs. Our results show that a fuzzer like Equifuzz can

make a valuable addition to the extensive testing that formal tools

like ECs already go through, by catching edge-case bugs that had

gone unnoticed.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


DAC’24, June 23–27, Moscone West, San Fransisco Michalis Pardalos, Alastair F. Donaldson, Emiliano Morini, Laura Pozzi, and John Wickerson

1.1 Related Work
Fuzzing is a well-known technique, which has been applied on

many different types of targets. Compilers are a usual target, due to

the possible widespread impact of bugs in them, with a large variety

of techniques presented in the literature [3]. Fuzzing has been used

to find bugs in state of the art C [26, 16], graphics shader [4] and

OpenCL [17] compilers. It has also been effective in finding bugs

in tools in the same space as ECs: In the realm of EDA, bugs have

been found in FPGA synthesis [7] and high-level synthesis tools [8].

More generally, purpose-made fuzzers have also found bugs in

verification tools such as SMT solvers [25] and software model

checkers [27].

Another possible way to avoid bugs in ECs altogether is to prove

the implementation bug-free using a proof assistant. Khan et al. [13]

have done this using Coq, though their checker only handles simple

combinational circuits built from basic Boolean gates. Other EDA

tools that have been proven bug-free using such deductive methods

include Vericert (high-level synthesis, verified in Coq) [9] and Lutsig

(logic synthesis, verified in HOL4) [19].

2 PROBLEM STATEMENT
We are looking to create random, valid inputs for an EC, in order

to trigger buggy behaviours. In general, an EC checks equivalence

between two languages 𝐿1 and 𝐿2. In the context of this paper,

𝐿1 is SystemC and 𝐿2 is RTL, but we present our approach more

generally so that it could be applied to other languages. An EC can

be viewed as a function of the following type:

⟨𝑃1 ( ®𝑥), 𝑃2 ( ®𝑥)⟩ → {True, False, Error}

where 𝑃𝑖 ( ®𝑥) is a program in language 𝐿𝑖 , which takes ®𝑥 as inputs.

The EC will have one of the following results:

• “True”, if it can show that for all inputs ®𝑥 , 𝑃1 ( ®𝑥) and 𝑃2 ( ®𝑥)
(i.e. 𝑃1 and 𝑃2, given the same input, ®𝑥 ) have the same output.

• “False”, if it can show that 𝑃1 ( ®𝑥) and 𝑃2 ( ®𝑥) have different
outputs for some inputs, i.e. that there exists an ®𝑥 for which

𝑃1 and 𝑃2 compute different results. In this case, it will also

give a counterexample showcasing an example input ®𝑥 that

causes a disagreement in output.

• “Error”, if the input is invalid in some way (e.g. it exhibits a

syntax or type error).

The problem, then, is to generate pairs of programs ⟨𝑃1 ( ®𝑥), 𝑃2 ( ®𝑥)⟩,
together with an expected result 𝐸 ∈ {True, False, Error} for each
pair, according to whether the programs really are equivalent (or

even valid). We can then use these program pairs with their ex-

pected results to look for violations of this expectation. These vio-

lations can be divided into the following categories:

False positive The EC says that two programs are equivalent,

when in reality they are not. This could be either because the

two programs exhibit different behaviours (valid programs
wrongly deemed inequivalent), or because one of the two is

invalid in some way (e.g. contains a syntax error) and thus

should be rejected (invalid programs deemed equivalent).
False negative The EC says that two programs are not equiv-

alent, when in reality they are (they are both valid and have

the same behaviour for all inputs).

Valid input rejected The EC gives an error message, even

though both input programs are valid.

Of those, a false positive is the most critical class of bug, as it

could mean that an incorrect design is signed-off. We also refer

to this kind of bug as “unsoundness”. A false negative or valid

input being rejected, if not fixed, could result in lost engineering

time for the verification engineer, who will have to re-write their

design in a way that works around the bug. As we will demonstrate

in Subsection 3.3, however, a false negative can be exploited to

create a false positive, so false negatives also need to be addressed

seriously. It is also possible for the EC to fail to produce a result,

usually because of reaching memory or time limits. Such results

are expected, as there are limits to the kinds of programs that an

EC could be expected to cope with. We did not encounter any such

issues in our investigation, and, even if we had, we would not have

reported them as bugs.

3 FUZZER DESIGN
Given this general problem statement, we constrain it to a more

limited problem in order to arrive at a concrete implementation.

3.1 Constraining the problem
The “direct” approach to this problemwould be to generate arbitrary

⟨𝑃1 ( ®𝑥), 𝑃2 ( ®𝑥)⟩, decide whether they are equivalent, and use that to
test the EC. This approach has multiple problems. First, we run into

the oracle problem [1]: Deciding whether two arbitrary programs

are equivalent amounts to building another equivalence checker

(which would likely contain many more bugs than the commercial

ECs we are testing). Even overcoming that (say, using differential

testing [20]) this approach would be unlikely to find any bugs. Two

entirely arbitrary programs will, almost certainly, be non-equivalent

in uninteresting ways.

Constraining the problem can bothmake it tractable and increase

chances of finding bugs. First of all, we can focus our attention on

valid programs: That is, SystemC programs that can be compiled

and run without error. There are multiple reasons for this. First, an

invalid program will simply not test as much of the EC as we would

like. For example, a program that does not even parse as valid C

code will be rejected before most of the equivalence checker’s code

has even had a chance to run. Such a program is, therefore, less

likely to trigger a bug in the EC. Secondly, we need a program that

can run to completion in order to have an expected output to check

against.

We further decide to focus on input-free programs. That is, pro-

grams that take no inputs and can be expected to produce a constant

result. This might appear to dramatically reduce the chances of

triggering real-world bugs. However, input-free programs have

proven to be useful in the domain of compiler testing: CSmith [26]

and Verismith [7] both used exclusively input-free programs to find

multiple miscompilation bugs in C compilers and FPGA synthesis

tools, respectively.

Given these two restrictions (i.e. generating only valid, input-

free programs), we can generate program pairs as follows: Generate

an input-free program 𝑃1 (in SystemC), which simply performs a

computation on constants. This program will have some constant



Who checks the checkers? DAC’24, June 23–27, Moscone West, San Fransisco

output 𝑁 . Then, 𝑃2 can be a program (in another language sup-

ported by the EC, e.g. Verilog) that outputs 𝑁 directly, without

performing any computation. The expected result 𝐸 for the equiva-

lence of 𝑃1 and 𝑃2 will therefore be True. Any non-equivalent result

from an EC (i.e. negative or error) can be considered a probable

bug.

3.2 Undefined behaviour
Given that SystemC is a superset of C++, we must contend with the

existence of undefined behaviour (UB) in the programs we generate

for testing. The usual approach in compiler fuzzing, as popularised

by the Csmith tool [26], is to construct the generator such that

it avoids programs that could trigger UB. This is because, when

talking about compiler testing, code that triggers UB has no value

with regards to finding bugs: The compiler is free to generate code

that behaves in an arbitrary fashion when executed on inputs that

trigger UB, therefore, no behaviour exhibited by the program on

those inputs could be considered a bug.

In the context of equivalence checking (and perhaps formal

tooling more generally) the story is not quite as simple. What

should a C-to-RTL equivalence checker do when given a C program

that triggers undefined behaviour? Since the program can have

any behaviours at all, it is both equivalent and non-equivalent to

any and all RTL designs! We take the stance that a positive result

is a false-positive bug, and that any non-positive result is correct,

whether that be a negative answer (possibly with a counter-example

showing the input that triggers the UB) or simply an error.

We have taken this approach to UB into account with Equifuzz.

Equifuzz will occasionally generate programs containing undefined

behaviour. Given that we are testing ECs, these programs are not

“useless”, as they would be if we were testing compilers. The ideal

approach here would be to detect when a generated program con-

tains UB, and then expect a non-positive result from the EC. We

attempted to perform this detection using the “undefined behaviour

sanitizer” (UBSan) feature of the Clang compiler [18]. Unfortunately,

this approach ran into issues with the Accellera SystemC imple-

mentation triggering undefined behaviour for valid SystemC code.

We reported this issue to the developers
1
, who confirmed that the

issue was present in the latest stable version of the library (SystemC

2.3), but that it had already been fixed in the upcoming SystemC

3.0 release. Our alternative approach has been to use the result

given by the Accellera SystemC implementation even for programs

with UB, this way, we can still find cases where the EC under test

disagrees with Accellera’s SystemC. After finding the discrepancy

we can check whether the result constitutes a bug manually, often

using UBSan to check if UB could be present.

3.3 Converting false negatives to false positives
When looking for EC bugs we want to, ideally, maximise the pro-

portion of false positive (unsoundness) results. The design we have

described, however, can only directly find false negative or valid

input rejected bugs. This is because we generate program pairs

that are equivalent. Fortunately for the class of programs we are

working with (input-free), there is a way to recover a (possible)

false-positive bug from a false-negative. Recall that ECs produce a

1
Link to issue tracker removed for blind review

counterexample when they give a negative result. For input-free (i.e.

constant) programs, this counterexample contains the value that

the EC believes that program evaluates to. If we know that the EC is

incorrect, then we can create a new program which directly returns

the value that the EC expects. We can then use this to trigger a

false-positive bug in the EC. Figure 1 illustrates this process.

This process was successful in converting every false negative

result found during our testing (where the EC provided a counterex-

ample) into a false positive. It is certainly possible to encounter a bug
that cannot be converted to a false positive using this process but we

did not during our testing. Such a bug would manifest as a program

that should be equivalent to value 𝑥 , but when compared to it using

the EC produces a negative result with a counterexample claiming

it is actually equivalent to value 𝑦, but then when compared to 𝑦

produces another negative result, with another counterexample

claiming it is equal to a third value 𝑧.

ECint f() {return 1 + 1;}

𝑃1

assign out = 2;

𝑃2

Counterexample:

𝑃1 output: “5”

𝑃2 output: “2”

EC assign out = 5;

𝑃 ′
2

Equivalent

Wrong!

Wrong!

Figure 1: Converting a false negative (failing to prove 1+1=2)
into a false positive (proving 1+1=5).

4 FUZZER IMPLEMENTATION
At a high level the fuzzer follows the following process to generate

inputs for the EC.

(1) Generate an input-free SystemC program 𝑃 using themethod

that will be specified below.

(2) Compile and run it using GCC and the Accellera SystemC

Class Library [12] to get its output 𝑁 .

(3) Use the EC to check that 𝑃 is equivalent to the constant 𝑁 .

If the EC finds them non-equivalent or cannot decide, then

there is a possible bug.

The most complex part of this process is step 1. We need to

generate programs that cover a wide range of SystemC features,

while remaining valid SystemC. It is also important to make them

amenable to reduction (as will be discussed in Section 5).

In order to get the expected result of the generated SystemC

code we use the Accellera SystemC Class Library. This is a soft-

ware implementation of the C++ classes mandated by the SystemC

Standard [10].

We should note here: Any bugs that show up could possibly

be bugs in either GCC or the Accellera SystemC implementation.

Speaking precisely, what the described system is set up to find



DAC’24, June 23–27, Moscone West, San Fransisco Michalis Pardalos, Alastair F. Donaldson, Emiliano Morini, Laura Pozzi, and John Wickerson

Seed(42)

int f() {

return 42;

}

Apply: Cast(sc_uint<16>)

sc_uint <16> f() {

sc_uint <16> x1 = sc_uint <16 >(42);

return x1;

}

Apply: Multiply(4)

sc_uint <16> f() {

sc_uint <16> x1 = sc_uint <16 >(42);

return x1 * 4;

}

Apply: Cast(sc_fixed<10,2>)

sc_fixed <10,2> f() {

sc_uint <16> x1 = sc_uint <16 >(42);

sc_fixed <10,2> x2 =

sc_fixed <10,2>(x1 * 4);

return x2;

}

Figure 2: Example of generation process

is discrepancies between the EC under test and the combination

of GCC and Accellera SystemC. Once the fuzzer uncovers such a

discrepancy (i.e. “possible bug”) it is up to a human to verify that this

is, indeed, a bug in the EC, and not any of the other component of the

system (including the fuzzer itself). This means examining the bug-

triggering program against the SystemC reference manual to verify

that it should, indeed, have the behaviour that the fuzzer expected

it to have (rather than the one that the EC expected). This process is

generally quite easy, thanks to the automated test case reduction we

have implemented (we give more details in Section 5) which means

that the test cases presented by Equifuzz are minimised (usually

under 5 lines of code). Also, in our experience, the EC under test

has always been to blame for the discrepancy.

With the above goals in mind, we follow an approach inspired

by HyperPUT [6]. Equifuzz generates programs in steps. Starting
from a simple seed program (e.g. a random integer constant), we

iteratively apply transformations. As we expand the generated pro-

gram, we model it in two parts: the head expression, which will

become the final return statement, and a list of statements that will

become the body of the function. Transformations modify the head

expression and add statements to the list. They cannot modify the

statements given by previous transformations. We also keep track

of some extra information about the head expression, such as its

type and bit-width. This is used to decide whether transformations

can be applied. An example of this process is given in Figure 2: We

begin with a seed expression 42, which is transformed by adding a

cast, a multiplication and finally a second cast.

4.1 Experiment runner
Having a way to generate test cases, Equifuzz also needed the

surrounding structure to run them against the ECs being tested.

This process was formed out of practical constraints around the

servers that were needed to run the ECs-under-test

This runner follows the following process:

(1) Generate an experiment as described in Section 4.

(2) Generate a TCL script to drive the EC we are testing against,

and a Verilog design containing the expected result value.

(3) Connect to a server that can run the EC over SSH, copy the

generated SystemC code, the Verilog program for compari-

son and the TCL script

(4) Run the EC to get a result.

(5) If the result is not as expected, mark the code as a possible

bug and begin reducing the test case, using the same process

to run the reduced test cases.

We have also developed a web-based user interface for the fuzzer,

which displays the test cases that are currently running or have

been run. This allows quickly sifting through a large number of

test cases, as well as simplifying debugging of the fuzzer.

5 REDUCER DESIGN AND IMPLEMENTATION
After a bug-triggering example is found, we need to reduce it. This
makes it easier to understand (and therefore easier for the EC de-

velopers to fix) and also allows us to spot duplicate bugs. There are

various techniques to achieve this in the literature. In recent work,

PERSES [24] described a general method of program reduction

which uses language grammars to exclusively consider synacti-

cally valid programs during reduction. Our reduction algorithm

is based on work from Donaldson et al. [5] on test case reduction

for transformation-based fuzzers. It operates on programs repre-

sented as the sequences of transformations that generated them. It

attempts to remove transformations in batches, while still preserv-

ing the bug. We remove a sequence of 𝑁 transformations from the

sequence, generate the program for that sequence, and use it to test

the EC (i.e. run the program with the reference SystemC implemen-

tation, and compare the program against the result value using the

EC, expecting a positive result). If the response is incorrect (i.e. neg-

ative), then the bug can be triggered without these transformations

so they can be removed, and we iterate with the reduced sequence.

If the response is correct, then the transformations are necessary

to trigger the bug, so we keep the same sequence, and try again

with a reduced 𝑁 . This is repeated until there is no value of 𝑁 ≥ 1

for which transformations can be removed.

6 EXPERIMENTAL RESULTS
We have run Equifuzz against two commercial formal equivalence

checkers and discovered false positive, false negative, and valid

input rejected bugs in both. All bugs have been reported to and

confirmed by the tool vendors. We have classified the bugs found

into four categories:

False positive: Invalid input An invalid programwas deemed

equivalent to some value by the EC. Invalid heremeans either

not allowed by the SystemC reference manual or triggering

UB.



Who checks the checkers? DAC’24, June 23–27, Moscone West, San Fransisco

Tool False positive: False positive: False negative Valid input rejected Total
invalid input valid input

FEC 1 1 3 0 2 6
FEC 2 2 1 1 2 6

Table 1: Summary of bugs found

False positive: Valid input Avalid programwas deemed equiv-

alent to an incorrect value by the EC. These cases were dis-

covered as false negatives and converted using the process

described in Subsection 3.3.

False negative A valid program, compared to its true result,

produced an inequivalent result by the EC. Here, we only

list bugs that could not be converted into false positives.

Valid input rejected A valid program, compared to its true

result, produced an error by the EC.

All results are listed in Table 1.

We used Equifuzz to test the two ECs continuously through the

9 months of its development. During that time, new versions of the

Equivalence checkers being tested were released with bugs found

in previous versions fixed, while we continuously added new fea-

tures to Equifuzz. We searched for bugs opportunistically, running

the fuzzer for some period of time (usually overnight or during

a weekend) when we had implemented a new feature. If the new

feature had allowed for a new bug or bugs to be uncovered it would

usually mean there would be a collection of possible bugs reported

by Equifuzz, which we would then de-deduplicate to uncover the

true number of new bugs discovered. This was made much easier

thanks to the reduction described in Section 5. We also had to ad-

dress the issue of easier to trigger bugs constantly re-appearing,

increasing the volume of possible bugs to look through, and pos-

sibly obscuring harder to trigger bugs. We worked around this by

introducing restrictions to the programs Equifuzz was allowed to

generate in order to avoid known bugs.

All bugs were initially found using programs generated by se-

quences of about 30 transformations. After reduction, all were re-

duced to sequences of either two or three transformations. Notably,

there were no examples of single-transformation bugs. This means

that there was no single feature that was problematic in any of the

ECs tested. All bugs stemmed from interactions between language

features.

The speed of the bug-finding process is entirely limited by the

speed of the EC being tested, and not by Equifuzz. Generating a

program takes well under a second for the 30-transformation pro-

grams we used (and also for much larger sizes that were attempted).

Compiling and running the generated program to get an expected

result usually took a couple of seconds, meaning that the overall

program-generation process was in the order of 3-5 seconds. Run-

ning the ECs we tested took between 20 seconds and a full minute.

Furthermore, Equifuzz will generate programs while waiting for

the EC to finish and keep a queue of test programs ready. This all

means that the EC-under-test is going through test programs at the

fastest rate allowed by the hardware and number of licenses.

sc_dt::sc_uint <8> dut() {

sc_dt::sc_fixed <10,8> x0 =

sc_dt::sc_fixed <10,8>(-1);

sc_dt::sc_uint <8> x1 =

sc_dt::sc_uint <8>(x0);

return x1;

}

True result 0xFF

Result accepted by EC 1 0xFC

Figure 3: Example of bug found in EC 1

6.1 Bug examples
As an example of the kinds of bugs that Equifuzz can find, Figure 3

lists the code to trigger one of the false-negative bugs found in

EC 1. The problematic operation here was the cast from sc_fixed
to sc_uint. According to the SystemC specification (which the

reference implementation followed correctly), this cast should trun-

cate the fractional part of the fixed point number, and then use

the integer part as a sc_uint value. Instead, EC 1 assumes that the

operation should use the entire sc_fixed value, and re-interpret it

as an sc_uint.
In Table 1, we list a one unsoundness bug due to an invalid input

being deemed equivalent to some value. This refers to a bug that

was discovered as an incompleteness, but could be converted into

a false positive through manual investigation. The original bug, as

discovered by Equifuzz, was triggered by the code in Figure 4. This

code is valid SystemC, and produces a result of 157952. However,

after some manual testing, attempting to get the EC to accept this

code, we found a related bug, triggered by the code in Figure 5.

This code is illegal according to the SystemC standard. The mul-

tiplication x * 128 is meant to have type int, since, according
to the standard, x should be implicitly cast to a native C++ int.
Native C++ ints do not have a to_int() method (or any method).

However, the EC accepts it, and gives a positive result when com-

paring it to the constant value 157952, which we consider a bug (as

discussed in Subsection 3.2).



DAC’24, June 23–27, Moscone West, San Fransisco Michalis Pardalos, Alastair F. Donaldson, Emiliano Morini, Laura Pozzi, and John Wickerson

int f() {

sc_int <63> x = 1234;

return x * 128;

}

Figure 4: Code to trigger incompleteness bug, as found by
Equifuzz. Result is 157952. EC 1 produces an error when com-
paring this against any RTL.

int f() {

sc_int <63> x = 1234;

return (x * 128). to_int ();

}

Figure 5: Code to trigger false positive bug. Should not com-
pile according to SystemC standard, but compares equal to
RTL producing the value 157952 under EC 1

7 CONCLUSION
We have introduced Equifuzz, a fuzzer for formal equivalence check-

ers using SystemC. Equifuzz generates input-free SystemC pro-

grams in a step-by-step manner, which allows for straightforward

test-case reduction.We have demonstrated its effectiveness by using

it to uncover 12 bugs in commercial ECs, including 7 unsoundness

bugs that could have led to incorrect designs being signed off.

In the future, there are certain improvements we believe could be

made to equifuzz in order to expand the classes of bugs that it can

detect, and generally improve its utility to the users and developers

of ECs:

(1) We would like to evaluate how different sizes for the gener-

ated programs affect the rate at which bugs are found, and,

indeed, whether certain bugs are discovered at all. There is

a trade-off here between having more operations that could

possibly trigger bugs while also having the possibility that

operations later in the program “hide” bugs triggered by

earlier operations.

(2) Currently, we can only generate combinational designs. ECs

should contain code to perform k-induction [22] or a similar

technique. We would need to generate sequential code to

test that.

(3) It is possible that using entirely input-free programs “ob-

scures” parts of the EC from the fuzzer. If the EC performs

any kind of simplification on the programs it is given, then

our programs will very likely get folded down to a single

constant, meaning we would only properly test code in the

EC that runs before this simplification.

REFERENCES
[1] Earl T. Barr et al. “The Oracle Problem in Software Testing:

A Survey”. In: IEEE Transactions on Software Engineering 41.5
(May 2015), pp. 507–525.

[2] Scott Bauer, Pascal Cuoq, and John Regehr. “Deniable Back-

doors using Compiler Bugs”. In: PoC GTFO 9 (2015). url:

https://www.alchemistowl.org/pocorgtfo/pocorgtfo08.pdf.

[3] Junjie Chen et al. “A Survey of Compiler Testing”. In: ACM
Computing Surveys 53.1 (Feb. 2020), pp. 1–36. issn: 1557-7341.

[4] Alastair F. Donaldson and Andrei Lascu. “Metamorphic test-

ing for (graphics) compilers”. In:MET ’2016. ACM, May 2016.

[5] Alastair F. Donaldson et al. “Test-case reduction and dedupli-

cation almost for free with transformation-based compiler

testing”. In: PLDI ’2021. ACM, June 2021.

[6] Riccardo Felici, Laura Pozzi, and Carlo A. Furia. “HyperPUT:

Generating Synthetic Faulty Programs to Challenge Bug-

Finding Tools”. In: (Sept. 2022). arXiv: 2209.06615 [cs.SE].
[7] Yann Herklotz and John Wickerson. “Finding and Under-

standing Bugs in FPGA Synthesis Tools”. In: FPGA ’2020.
ACM, Feb. 2020.

[8] Yann Herklotz et al. “An Empirical Study of the Reliability

of High-Level Synthesis Tools”. In: 29th IEEE Annual Interna-
tional Symposium on Field-Programmable Custom Computing
Machines, FCCM 2021, Orlando, FL, USA, May 9-12, 2021. IEEE,
2021, pp. 219–223.

[9] YannHerklotz et al. “Formal verification of high-level synthe-

sis”. In: Proc. ACM Program. Lang. 5.OOPSLA (2021), pp. 1–

30.

[10] “IEEE Standard for Standard SystemC Language Reference

Manual”. In: ().

[11] Synopsys Inc. VC Formal Datapath Validation. url: https:
/ /www. synopsys . com /verification / static - and - formal -

verification/vc-formal/vc-formal-datapath-validation.html

(visited on 11/16/2023).

[12] Accellera Systems Initiative. SystemC Class Library. Dec. 2,
2022. url: https://github.com/accellera- official/systemc

(visited on 11/19/2023).

[13] Wilayat Khan et al. “CoCEC: An Automatic Combinational

Circuit Equivalence Checker Based on the Interactive Theo-

rem Prover”. In: Complex. 2021 (2021), 5525539:1–5525539:12.
[14] Vinod Khera. Jasper C2RTL App for Datapath Verification.

July 12, 2022. url: https://community.cadence.com/cadence_

blogs _ 8 / b / fv / posts / jasper - c2rtl - app - for - datapath -

verification (visited on 11/16/2023).

[15] Alfred Koelbl, Kiran Vittal, and Pratik Mahajan. Verifying
Complex Datapath Designs with HECTOR. Feb. 23, 2021. url:
https://www.synopsys.com/blogs/chip-design/verifying-

complex-datapath-designs-with-hector.html (visited on

10/13/2023).

[16] Vu Le, Mehrdad Afshari, and Zhendong Su. “Compiler vali-

dation via equivalence modulo inputs”. In: ACM SIGPLAN
Notices 49.6 (June 2014), pp. 216–226. issn: 1558-1160.

[17] Christopher Lidbury et al. “Many-core compiler fuzzing”.

In: ACM SIGPLAN Notices 50.6 (June 2015), pp. 65–76. issn:
1558-1160.

[18] LLVM/Clang. UndefinedBehaviorSanitizer. 2023. url: https:
//clang.llvm.org/docs/UndefinedBehaviorSanitizer.html

(visited on 11/15/2023).

[19] Andreas Lööw. “Lutsig: a verified Verilog compiler for veri-

fied circuit development”. In: CPP ’21: 10th ACM SIGPLAN
International Conference on Certified Programs and Proofs,
Virtual Event, Denmark, January 17-19, 2021. Ed. by Catalin

Hritcu and Andrei Popescu. ACM, 2021, pp. 46–60.

https://www.alchemistowl.org/pocorgtfo/pocorgtfo08.pdf
https://arxiv.org/abs/2209.06615
https://www.synopsys.com/verification/static-and-formal-verification/vc-formal/vc-formal-datapath-validation.html
https://www.synopsys.com/verification/static-and-formal-verification/vc-formal/vc-formal-datapath-validation.html
https://www.synopsys.com/verification/static-and-formal-verification/vc-formal/vc-formal-datapath-validation.html
https://github.com/accellera-official/systemc
https://community.cadence.com/cadence_blogs_8/b/fv/posts/jasper-c2rtl-app-for-datapath-verification
https://community.cadence.com/cadence_blogs_8/b/fv/posts/jasper-c2rtl-app-for-datapath-verification
https://community.cadence.com/cadence_blogs_8/b/fv/posts/jasper-c2rtl-app-for-datapath-verification
https://www.synopsys.com/blogs/chip-design/verifying-complex-datapath-designs-with-hector.html
https://www.synopsys.com/blogs/chip-design/verifying-complex-datapath-designs-with-hector.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html


Who checks the checkers? DAC’24, June 23–27, Moscone West, San Fransisco

[20] William M McKeeman. “Differential testing for software”.

In: Digital Technical Journal 10.1 (1998), pp. 100–107.
[21] Mentor Graphics Corporation. Mentor Ushers in New Era of

C++ Verification Signoffwith NewCatapult Tools and Solutions.
June 6, 2017. url: https : / /www.prnewswire.com/news-

releases/mentor- ushers- in- new- era- of- c- verification-

signoff-with-new-catapult-tools-and-solutions-300469227.

html (visited on 10/13/2023).

[22] Mary Sheeran, Satnam Singh, andGunnar Stålmarck. “Check-

ing Safety Properties Using Induction and a SAT-Solver”. In:

FMCAD ’2000. Springer Berlin Heidelberg, 2000, pp. 127–144.

[23] Siemens. C++/SystemC/RTL Formal. (Visited on 11/16/2023).

[24] Chengnian Sun et al. “Perses: Syntax-Guided Program Re-

duction”. In: ICSE ’2018. ACM, May 2018.

[25] Dominik Winterer, Chengyu Zhang, and Zhendong Su. “Val-

idating SMT solvers via semantic fusion”. In: PLDI ’2020.
Ed. by Alastair F. Donaldson and Emina Torlak. ACM, 2020,

pp. 718–730.

[26] Xuejun Yang et al. “Finding and understanding bugs in C

compilers”. In: PLDI ’11. San Jose, California, USA: Associa-

tion for Computing Machinery, June 2011, pp. 283–294. isbn:

9781450306638.

[27] Chengyu Zhang et al. “Finding and understanding bugs in

software model checkers”. In: ESEC/SIGSOFT FSE 2019. Ed. by
Marlon Dumas et al. ACM, 2019, pp. 763–773.

https://www.prnewswire.com/news-releases/mentor-ushers-in-new-era-of-c-verification-signoff-with-new-catapult-tools-and-solutions-300469227.html
https://www.prnewswire.com/news-releases/mentor-ushers-in-new-era-of-c-verification-signoff-with-new-catapult-tools-and-solutions-300469227.html
https://www.prnewswire.com/news-releases/mentor-ushers-in-new-era-of-c-verification-signoff-with-new-catapult-tools-and-solutions-300469227.html
https://www.prnewswire.com/news-releases/mentor-ushers-in-new-era-of-c-verification-signoff-with-new-catapult-tools-and-solutions-300469227.html

	Abstract
	1 Introduction
	1.1 Related Work

	2 Problem statement
	3 Fuzzer Design
	3.1 Constraining the problem
	3.2 Undefined behaviour
	3.3 Converting false negatives to false positives

	4 Fuzzer implementation
	4.1 Experiment runner

	5 Reducer Design and Implementation
	6 Experimental Results
	6.1 Bug examples

	7 Conclusion

